Odds ratio

Odds ratio (OR) calculation

OR interpretation

The odds ratio can be calculated by performing a cross product ratio.

	Cases Diseased	Controls Non-diseased
Exposed		

Cohort study

$$
\frac{\mathrm{AD}}{\mathrm{BC}} \leftarrow \mathrm{OR} \rightarrow \frac{\mathrm{AD}}{\mathrm{BC}}
$$

Odds of disease
in exposed

Odds of disease in non-exposed

Case-control study

$\frac{\mathrm{AD}}{\mathrm{BC}} \longleftarrow \mathrm{OR} \longrightarrow \frac{\mathrm{AD}}{\mathrm{BC}}$	
Odds of disease in exposed	
Odds of disease in non-exposed	Odds of exposure in diseased (cases)
Odds of exposure in non-diseased (controls)	

$=1$ Risk in exposed = Risk in non-exposed
No association
> 1 Risk in exposed > Risk in non-exposed
Exposure = Risk factor
<1 Risk in exposed < Risk in non-exposed
Exposure = Protective factor

For the odds ratio to be a valid approximation of the relative risk the disease needs to be rare.

Odds ratio in cohort study
Ratio of odds that exposed developed disease
to the odds that non-exposed developed disease

Odds ratio in case-control study
Ratio of odds that the cases were exposed to the odds that the controls were exposed
$\left.\begin{array}{c}\text { Odds of disease in exposed }=\frac{P}{1-P}=\frac{\frac{A}{A+B}}{\frac{B}{A+B}} \\ \text { Odds of disease in non-exposed }=\frac{P}{1-P}=\frac{\frac{C}{C+D}}{\frac{D}{C+D}} \\ \frac{B}{D}\end{array}\right)=\frac{A D}{B C}$

